The	variety	F -semilattices

Nashville 0000000

Minimal quasivarieties of semilattices with a group of automorphisms

Miklós Maróti, Ildikó Nagy

University of Szeged

Jardafest, June 25, 2010.

The variety of F -semilattices	Nashville	The quasivariety of ⊮-semilattices	Tournaments
●○○○	0000000	00000	0000

1996: **F**-SEMILATTICES

Definition

F-semilattice is an algebra $\mathbf{S} = \langle S; \land, F \rangle$ where

- $\langle S; \wedge
 angle$ is a semilattice,
- $\mathbf{F} = \langle F; \cdot, {}^{-1}, \mathrm{id} \rangle$ is a group,
- **F** acts on $\langle S; \wedge \rangle$ as automorphisms.

For a fixed group \mathbf{F} the class of \mathbf{F} -semilattices is a variety.

- Kearnes, Szendrei (97): Self-rectangulating varieties of type 5.
- Kearnes (1995): Semilattice modes.
- Burris, Valeriote (1983): Expanding varieties by monoids of endomorphisms.
- Ježek (1991): Subdirectly irreducible Z-semilattices.
- Ježek (1982): Simple \mathbb{Z}^2 -semilattices.

The variety of F-semilattices ●○○○	Nashville 0000000	The quasivariety of \mathbb{F} -semilattices 00000	Tournaments

1996: **F**-SEMILATTICES

Definition

F-semilattice is an algebra $\mathbf{S} = \langle S; \wedge, F \rangle$ where

- $\langle S; \wedge
 angle$ is a semilattice,
- $\mathbf{F} = \langle F; \cdot, {}^{-1}, \mathrm{id} \rangle$ is a group,
- **F** acts on $\langle S; \wedge \rangle$ as automorphisms.

For a fixed group \mathbf{F} the class of \mathbf{F} -semilattices is a variety.

- Kearnes, Szendrei (97): Self-rectangulating varieties of type 5.
- Kearnes (1995): Semilattice modes.
- Burris, Valeriote (1983): Expanding varieties by monoids of endomorphisms.
- Ježek (1991): Subdirectly irreducible Z-semilattices.
- Ježek (1982): Simple \mathbb{Z}^2 -semilattices.

1996: CANONICAL EMBEDDING

Definition

$$\mathbf{P}(F) = \langle P(F); \cap, F \rangle$$
 where $f(A) = A \cdot f^{-1}$ for all $A \subseteq F$.

For $s \in S$ the map $\varphi_s : \mathbf{S} \to \mathbf{P}(F)$, $\varphi_s(x) = \{ f \in F \mid f(x) \ge s \}$ is a homomorphism that separate the points of **S**.

_emma

Every subdirectly irreducible **F**-semilattice **S** is isomorphic to a subalgebra $\mathbf{U} \leq \mathbf{P}(F)$ where

- $M = \bigcap \{ A \in U \mid id \in A \} \in U,$
- M is a submonoid of F,

• $M \cdot A = A$ for all $A \in U$.

If **S** is finite, then *M* is a subgroup and $\mathbf{U} = \{\emptyset\} \cup \{Mf \mid f \in F\}$ is a flat semilattice.

1996: CANONICAL EMBEDDING

Definition

$$\mathbf{P}(F) = \langle P(F); \cap, F \rangle$$
 where $f(A) = A \cdot f^{-1}$ for all $A \subseteq F$.

For $s \in S$ the map $\varphi_s : \mathbf{S} \to \mathbf{P}(F)$, $\varphi_s(x) = \{ f \in F \mid f(x) \ge s \}$ is a homomorphism that separate the points of **S**.

Lemma

Every subdirectly irreducible F-semilattice S is isomorphic to a subalgebra $U \leq P(F)$ where

- $M = \bigcap \{ A \in U \mid id \in A \} \in U$,
- M is a submonoid of F,

• $M \cdot A = A$ for all $A \in U$.

If **S** is finite, then *M* is a subgroup and $\mathbf{U} = \{\emptyset\} \cup \{Mf \mid f \in F\}$ is a flat semilattice.

We assume that \mathbf{F} is commutative (open for general groups).

Lemma (Maróti)

If a simple ${\bf F}\mbox{-semilattice}$ has a least element, then it is isomorphic to

$$\mathbf{S}_{M} = \{\emptyset\} \cup \{ Mf \mid f \in F \}$$

for some subgroup $M \leq F$.

Lemma (Maróti)

If a simple **F**-semilattice does not have a least element, then it can be embedded into

$$\mathbf{R}_{\beta} = \langle \mathbb{R}; \min, F \rangle$$

where $\beta : \mathbf{F} \to \langle \mathbb{R}; + \rangle$ is a homomorphism and $f(a) = a - \beta(f)$.

 The variety of F-semilattices
 Nashville
 The quasivariety of F-semilattices
 Tournaments

 000
 0000
 0000
 0000
 0000

 1996:
 SIMPLE
 F-SEMILATTICES
 0000

Definition

 $\beta:\mathbf{F} \to \langle \mathbb{R};+ \rangle$ is dense if

$$(orall arepsilon > 0)(\exists f \in F)(0 < eta(f) < arepsilon.)$$

Theorem

If F is commutative, then the simple F-semilattices are precisely

- S_M where M is any subgroup of F,
- \mathbf{Z}_{α} , where $\alpha : \mathbf{F} \to \langle \mathbb{Z}; + \rangle$ is a surjective homomorphism,
- \mathbf{R}_{β} , where $\beta : \mathbf{F} \to \langle \mathbb{R}; + \rangle$ is a dense homomorphism.

These algebras are pairwise nonisomorphic.

The variety of **F**-semilattices

Nashville ●000000 The quasivariety of $\mathbb F\text{-semilattices}$ 00000

Tournaments 0000

Nashville ○●○○○○○ The quasivariety of $\mathbb F\text{-semilattices}$ 00000

1997-2002: Tournaments

Definition

A tournament is a conservative commutative groupoid.

- Ježek, Marković, Maróti, McKenzie (1999): The variety generated by tournaments.
- Ježek, Marković, Maróti, McKenzie (2000): Equations of tournaments are not finitely based.
- Freese, Ježek, Jipsen, Marković, Maróti, McKenzie (2002): The variety generated by order algebras.
- Maróti (2002):

The variety generated by tournaments (PhD thesis)

1997-2002: Tournaments

Definition

A tournament is a conservative commutative groupoid.

- Ježek, Marković, Maróti, McKenzie (1999): The variety generated by tournaments.
- Ježek, Marković, Maróti, McKenzie (2000):
 Equations of tournaments are not finitely based.
- Freese, Ježek, Jipsen, Marković, Maróti, McKenzie (2002): The variety generated by order algebras.
- Maróti (2002): The variety generated by tournaments (PhD thesis)

1997-2002: Tournaments

Definition

A tournament is a conservative commutative groupoid.

- Ježek, Marković, Maróti, McKenzie (1999): The variety generated by tournaments.
- Ježek, Marković, Maróti, McKenzie (2000): Equations of tournaments are not finitely based.
- Freese, Ježek, Jipsen, Marković, Maróti, McKenzie (2002): The variety generated by order algebras.
- Maróti (2002):

The variety generated by tournaments (PhD thesis)

Nashville ○○○●○○○ The quasivariety of $\mathbb F\text{-semilattices}$ 00000

Tournaments 0000

The variety of **F**-semilattices

Nashville

The quasivariety of $\mathbb F\text{-semilattices}$ 00000

Tournaments 0000

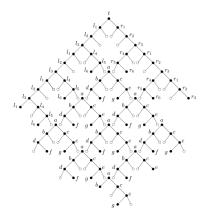
2001: Entropic groupoids

Definition

Medial identity: (xy)(zu) = (xz)(yu), **entropic** identity: you can exchange variables at the same (I, r) position.

Theorem (Ježek, Maróti)

- Decidable of a finite groupoid whether it satisfies all entropic identities.
- Undecidable of a finite partial groupoid whether it satisfies all entropic identities.



Nashville ○○○○●○ The quasivariety of $\mathbb F\text{-semilattices}$ 00000

Tournaments 0000

Nashville ○○○○○● The quasivariety of $\mathbb F\text{-semilattices}$ 00000

Tournaments 0000

0000	0000000	● ○ ○ ○ ○	0000
2007: Z-SEMILA	TTICES		

$$\mathbf{F} = \mathbb{Z}$$
, so $\mathbf{F} = \operatorname{Sg}(\{f\})$ for some $f \in F$.

Definition

• $\mathbf{A}_k = \{\emptyset\} \cup \{0, \dots, k-1\}$ flat semilattice, $f(\emptyset) = \emptyset$ and $f(i) = i+1 \mod k$

•
$$\mathbf{A}_{\infty} = \{\emptyset\} \cup \mathbb{Z}$$

•
$$\mathbf{B}_1^+ = \langle \mathbb{Z}, \min, f \rangle, f(i) = i + 1$$

• $\mathbf{B}_1^- = \langle \mathbb{Z}, \max, f \rangle, f(i) = i + 1$

•
$$\mathbf{C}_1 = \mathbf{B}_1^+ imes \mathbf{B}_1^-$$

• $\mathbf{B}_k^+, \mathbf{B}_k^-, \mathbf{C}_k$ spiral construction:

$$\mathbf{B}_{k}^{+} = \{\emptyset\} \cup \mathbf{B}_{1} \times \{0, \dots, k-1\}$$
$$f(\langle x, i \rangle) = \begin{cases} \langle x, i+1 \rangle & \text{if } i < k-1, \\ \langle x+1, 0 \rangle & \text{if } i = k-1. \end{cases}$$

 The variety of F-semilattices
 Nashville
 The quasivariety of F-semilattices
 Tournaments

 0000
 0000
 0000
 0000
 0000

2007: MINIMAL QUASIVARIETIES

Theorem (Dziobiak, Ježek, Maróti)

The minimal quasivarieties of \mathbb{Z} -semilattices are precisely the quasivarieties generated by $\mathbf{A}_{\infty}, \mathbf{A}_k, \mathbf{B}_k^+, \mathbf{B}_k^-, \mathbf{C}_k$ for all $k \ge 1$. These quasivarieties are pairwise distinct.

_emma

The unary terms are of the form $t(x) = \bigwedge_{h \in H} h(x)$ for some $H \subseteq \mathbb{Z}$, so they are endomorphisms.

_emma

Let Q be a minimal quasivariety, and $\mathbf{A} \in Q$ be a nontrivial algebra generated by $a \in A$.

- If $0 \in A$ and t(a) = 0, then $\mathcal{Q} \models t(x) \approx 0$.
- If t(a) = s(a), then $\mathcal{Q} \models t(x) \approx s(x)$.

 The variety of F-semilattices
 Nashville
 The quasivariety of F-semilattices
 Tournaments

 0000
 000000
 00000
 0000
 0000

2007: MINIMAL QUASIVARIETIES

Theorem (Dziobiak, Ježek, Maróti)

The minimal quasivarieties of \mathbb{Z} -semilattices are precisely the quasivarieties generated by $\mathbf{A}_{\infty}, \mathbf{A}_k, \mathbf{B}_k^+, \mathbf{B}_k^-, \mathbf{C}_k$ for all $k \ge 1$. These quasivarieties are pairwise distinct.

Lemma

The unary terms are of the form $t(x) = \bigwedge_{h \in H} h(x)$ for some $H \subseteq \mathbb{Z}$, so they are endomorphisms.

Lemma

Let Q be a minimal quasivariety, and $\mathbf{A} \in Q$ be a nontrivial algebra generated by $a \in A$.

- If $0 \in A$ and t(a) = 0, then $\mathcal{Q} \models t(x) \approx 0$.
- If t(a) = s(a), then $\mathcal{Q} \models t(x) \approx s(x)$.

The variety of F -semilattices	Nashville	The quasivariety of ⊮-semilattices	Tournaments
	0000000	००●००	0000

2007: MINIMAL VARIETIES

Lemma

Let Q be a minimal quasivariety of \mathbb{Z} -semilattices and S be the one-generated free algebra. If |S| = 1, then $Q = Q(A_1)$. If |S| > 1, then S is isomorphic to A_{∞} , $A_k(k \ge 2)$, B_k^+ , B_k^- or C_k .

Theorem (Dziobiak, Ježek, Maróti)

The minimal varieties of \mathbb{Z} -semilattices are precisely the quasivarieties generated by \mathbf{A}_{∞} and \mathbf{A}_{k} ($k \geq 1$).

Remark

There are 2^{\aleph_0} many subvarieties of the variety of \mathbb{Z} -semilattices.

 The variety of F-semilattices
 Nashville
 The quasivariety of F-semilattices
 Tournaments

 0000
 00000
 0000
 0000
 0000

 2009:
 MINIMAL
 QUASIVARIETIES
 OF
 F-SEMILATTICES

Again, we have to assume that **F** is commutative.

Lemma Suppose, that **A** is generated by $a \in A$, $Q = Q(\mathbf{A})$, and $\mathbf{B} \in Q$ is generated by $b \in B$. Then

$$\varphi: \mathbf{A} \to \mathbf{B}, \qquad r(a) \mapsto r(b)$$

is a surjective homomorphism.

Theorem (I. Nagy)

Suppose that **A** is one-generated and $Q = Q(\mathbf{A})$. Then Q is minimal if and only if every subalgebra of **A** generated by a non-zero element is isomorphic to **A**.

 The variety of F-semilattices
 Nashville
 The quasivariety of F-semilattices
 Tournaments

 0000
 00000
 0000
 0000
 0000

 2009:
 MINIMAL
 QUASIVARIETIES
 OF
 F-SEMILATTICES

Theorem (I. Nagy)

If **F** is finite, then the minimal quasivarieties of **F**-semilattices are the quasivarieties generated by \mathbf{A}_H where H is a subgroup of F.

Theorem (I. Nagy)

It is enough to describe all minimal quasivarieties that have no zero element. (Removal of the spiral, construction in both direction.)

Example

 $\mathbf{D}_{\alpha} = \langle \{ \langle k + l\alpha, m + n\alpha \rangle \in \mathbb{R}^2 \mid k + l\alpha \leq m + n\alpha \}; \langle min, max \rangle, \mathbb{Z}^2 \rangle$ generates a minimal quasivariety for all irrational number α .

 The variety of F-semilattices
 Nashville
 The quasivariety of F-semilattices
 Tournaments

 0000
 00000
 0000
 0000
 0000

 2009:
 MINIMAL
 QUASIVARIETIES
 OF
 F-SEMILATTICES

Theorem (I. Nagy)

If **F** is finite, then the minimal quasivarieties of **F**-semilattices are the quasivarieties generated by \mathbf{A}_H where H is a subgroup of F.

Theorem (I. Nagy)

It is enough to describe all minimal quasivarieties that have no zero element. (Removal of the spiral, construction in both direction.)

Example

 $\mathbf{D}_{\alpha} = \langle \{ \langle k + l\alpha, m + n\alpha \rangle \in \mathbb{R}^2 \mid k + l\alpha \leq m + n\alpha \}; \langle min, max \rangle, \mathbb{Z}^2 \rangle$ generates a minimal quasivariety for all irrational number α .

 The variety of F-semilattices
 Nashville
 The quasivariety of F-semilattices
 Tournaments

 0000
 00000
 0000
 0000
 0000

 2009:
 MINIMAL
 QUASIVARIETIES
 OF
 F-SEMILATTICES

Theorem (I. Nagy)

If **F** is finite, then the minimal quasivarieties of **F**-semilattices are the quasivarieties generated by \mathbf{A}_H where H is a subgroup of F.

Theorem (I. Nagy)

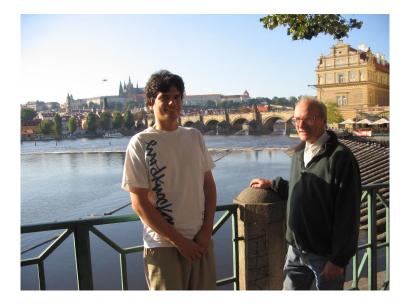
It is enough to describe all minimal quasivarieties that have no zero element. (Removal of the spiral, construction in both direction.)

Example

 $\mathbf{D}_{\alpha} = \langle \{ \langle k + l\alpha, m + n\alpha \rangle \in \mathbb{R}^2 \mid k + l\alpha \leq m + n\alpha \}; \langle min, max \rangle, \mathbb{Z}^2 \rangle$ generates a minimal quasivariety for all irrational number α .

Nashville 0000000 The quasivariety of $\mathbb F\text{-semilattices}$ 00000

Tournaments ●000



The variety of F -semilattices	Nashville	The quasivariety of ⊮-semilattices	Tournaments	
	0000000	00000	0●00	
2007: BI-TOURNAMENTS				

Definition

Every tournament $\langle T; \wedge \rangle$ can be turned into a bi-tournament as

$$x \wedge y = x \iff x \vee y = y.$$

Open problem

Is the variety generated by bi-tournaments is finitely axiomatizable?

Candidate of 12 equations, one of which is

$$g(f(g(x,y), f(f(f(x,y),z), g(x,y))), f(f(x,z), g(x,y))) = g(f(x, f(f(f(x,y),z), g(x,y))), f(f(x,z), g(x,y))).$$

The variety of **F**-semilattices

Nashville 0000000 The quasivariety of \mathbb{F} -semilattices

Tournaments 00●0

The variety of F -semilattices	Nashville	The quasivariety of $\mathbb F$ -semilattices	Tournaments
	0000000	00000	000●

Thank you!